133 Dalmeny Drive, Prestons NSW 2170, Australia +612-96074650 & 0412-203382

  JLTi Oppo Player        CD & DVD Player Upgrades        JLTi Tube Amps   

World-Wide Distributors
JLTi BDP Oppo Player
Oppo Level 4 Details
JLTi Phono - Back Again
JLTi EL34 & KT88 Amps
What is Terra Firma?
CD/DVD Upgrades FAQ
Contact Us
Elsinore Speakers DIY
Elsinore Project Kits
JLTi EL34 Wins Shootut
About Joe Rasmussen
JLTi Interconnects
JLTi Review & Comment
Tubes & The Gainclones
DIY Tube Gainclone
Joe's FVP Page
Joe's Equipment Photos
Fletcher-Munson Curves
Joe's Photos
Real Vs False Claims?




I originally promised two suggested versions, one with Tubes and one without. But as of November 2004, the non-buffered version(s) have been withdrawn.


Actually the NON-tubed version had many more complications though it looked like a simpler circuit. But the idea of this project/website was to promote buffered IGCs.


Letís look at Thorstenís original IGC:



Now this is not meant to be a critique of Thorstenís circuit perseí. Rather it is a logical starting point as it was originally for me. About a year ago I was approached by a friend with limited DIY abilities (hope he doesnít mind me saying this) to build the above circuit. Which I did and found it surprisingly good. But I also started to examine it in more detail and was convinced that there were areas that could be looked at. For example, notice that Thorsten chose a LINEAR volume pot, not the usual Log. This was actually quite clever: The pot is actually in the feedback path and results in the pot behaving more like Log. But it does this by shifting feedback and gain.


Here are the components/elements that control Volume and Feedback vs. Gain, all are inter-related.






Letís assume that the source is Lo Z, such as a CD Player, typically 200 Ohm, or small low fraction of the 100K pot. Letís assume Zero Z for simplicity. If we were to have the wiper at the top (max) then the input impedance is 100K and 10K in parallel = 9K09.


This circuit is Ė1.5dB at 10Hz, I would prefer it being flat to 10Hz and no more than -.5dB at 5Hz. Why? Because this is a feedback amp and I want to minimize the potential added phase shift that this causes inside the loop. It has been my past experience that this is an audible   improvement and also can better the sense of timing as well.


Possibly these values will cause even MORE noticeable LF roll-off with AC coupled sources, such as tube line output stages. So I would prefer the 2u2 cap be quite a lot higher value. I would like to see 10uF. Response flat down to 10Hz would be my aim and by changing other values, only 3u3 will be needed.


Letís look at the way feedback varies with pot changes. The gain is set by values 220K/10K = 22, or 26dB,  Ė but this potential max gain (hence lowest feedback) is reduced by the pot changes. At pot max position the 100K pot is not seen because of ĎZero Zí source and no change in gain/feedback. Same applies when the pot is set to minimum (grounded). But what if pot is in the mid position, as this is where it is more to be when in general operation?


The basic maths shows 100K pot will become 25K (because it is ĎZero Zí at ground too so itís 50K in parallel with 50K = 25K) in series with 10K, hence gain 220/(10+25) = 6.28 or 16dB.


So feedback changes and in the mid-position we have 10dB more feedback. (NS also specs minimum closed loop gain of 20dB for good stability).


Now in basic op-amp practice that ainít supposed to matter. Thatís how you set gain, so itís perfectly legitimate to vary feedback Ė and with a linear pot it works to advantage, as the pot now seems to operate similarly to a Log pot. I feel sure this guided Thorstenís mind? If not he may set me straight.


But it also means you cannot set the feedback exactly where you want it and you canít easily reduce it. I note that the original 47 Labs Gaincard has fixed gain slightly above 30dB, so the feedback values they must have used were not the ones shown in National Semiconductors PDF data file (20dB). I believe they did this because it sounds better. But in Thorstenís circuit the gain drops a whopping 10dB which means that typically 14dB + more feedback relative to the Gaincard.


Using a buffer is the ideal here and hence no pot in the feedback path. For further discussion, I suggest you read my essay ďTubes & The GainclonesĒ


Using a Unity Gain Buffer (i.e. no gain or gain = 1) looks like this:





Now thereís no variable feedback. Gain is now a stable 22 times or 26dB. But feedback value resistors should be adjusted to give gain a bit above +30dB a la Gaincard and predictable LF and HF roll-offs implemented. What could be better than using a tube here? It might well benefit the overall sound anyway (it does!). The actual output impedance, which is now inside the feedback loop, wonít be ĎZero Zí but in our new project about 200 Ohm. Thus the tube is inserted in both the signal path and Gainclone ICís feedback loop.


Now we can introduce the Tubed Inverted Gainclone (not really a Ďcloneí is it? I agree with Thorsten, but hey, this is how language develops):


Here it is in all its glory:



(Updated November 2004 - now using T-Network solution. Honorable mention to Franz Gysi.)


The tube I use in the JLTi amp and above, is the Sovtek 6922, current production version. Iím sure that others will have their own ideas. But a decent 6922 does work OK at the voltages shown; in fact Iíve seen circuits using 6922s operating at 24V. (But if you can get your mitty hands on a 6DJ8 Amperex Bugle Boy, don't hesitate!). Thatís a bit low for my comfort but always check that there is no DC on the input grid as grid current can be a problem, but not with up-to-spec 6DJ8s and less likely with 6922s. Also be aware of microphonics. The Sovtek that I use has been perfect in this regard, over a large sample, this is a good thing when you are manufacturing. Only one twin triode 6922 is needed, one half for each channel and 6.3V 360mA min regulated supply.



Now we come to another key feature:


Notice the 1n3* cap? Perhaps you have. It serves a couple of purposes, the first being that at very high frequencies it keeps the feedback path short (a la 47 Labs contention that feedback should be short but kinda difficult in a SERIES feedback situ). The second reason, in conjunction with 4K7 it becomes a low pass filter, or LPF. You could say this is bandwidth limiting but there is more to it. It does tailor the HF response so that it is minus 1.25dB at 20KHz. The target response achieved by listening test is shown here:



Caption: This is an actual measurement using an MLS signal of my JLTi amp. Note dB scale on the left.


It has been noted that the original Gaincard, while having great clarity and some have even said purity, it is known to be a little relentless in the top end (a bit hot or glary), some of which is claimed to be ameliorated by being left Ďoní or burnt in. In the case of the December 2001 Stereophile review, even a month wasnít quite enough. It was also suggested that it should be carefully system matched for optimum results. Keep your sources warm, or speakers? Choose your cables with care etc.


(Gainclones donít like a lot of capacitance and the 0R22 Resistor shown on the Speaker Output helps to cope with moderate amounts - you may wish not to use it, but it's a safe option keeping it in. With dynamic speakers, low capacitance cables, like single core that are a bit inductive, try without the 0R22 Resistor).


I was also able to confirm these generalizations myself, even with the Inverted Gainclone. One observer has described the Gaincards and Gainclones as having a 'nervous' sound,. Very detailed but also it bit on the edge. It became a kind of quest to sort out what was happening and IF anything could be done about it. Happily I can affirm something can be done and the end result is a less critical, more balanced warmth sound.


Happily, it also, as it turns out, this is one aspect that can be tuned by the individual DIYíourselfer.


I suspected it was a slew-rate type problem, in which case adjusting bandwidth passively by ear was the only way to go. What is the cause? Itís surely got to be feedback vs phase problem, or in reality positive feedback because the feedback is not keeping up pace. At some point the HF will start to lag beyond 90į, our feedback loop is not able to keep pace. An old but good solution is following this guide: At the point where phase lags behind by more than 90į, the open loop gain must not be higher than the closed loop gain.


This is the NS data sheet gain vs. phase response



Looking at it positively, this is actually not bad news because we now can work on a mechanism by which we can improve the sound of our Gainclones, tubed or not.


The graph indicates that an open-loop gain of about 30dB @ 200KHz. Above that the phase lag goes gradually off, beyond the 'ideal' 90į. It basically slows down. When feedback is not fast enough and in an Opamp  IC, then slew rate distortion results. That is why many solid-state amp design have a passive low-pass filter (usually a full band-pass filter) right on the input stage. So in that sense what Iím doing is not new, but what is new is this, adjusting this low-pass by ear. It is very audible mechanism.


Bottom line, it is clearly born out by listening tests, whatever the theory!!!!


In order for the final value (my choice) to be verified further by ear, I asked a friend to take the amp for a period of time and adjust the value. No other changes were to be made except this cap value. His system has what I would call an even balance and no tendency towards either brightness or dullness. I put a 390pF cap in there first and gave him a handful of others with increasing values, one of which was the previously preferred 1n3. This value was preferred as well by my independent tester...


My suggestion is that any DIY builders should also try out different values and I would be interested in the feedback. Believe me, it does affect the final sonics and itís one of the things that are NOW tunable for individual experimentation.


The NON-Tube version also did incorporate this kind of approach, but it actually more complicated as it couldn't be stabilised. This and other matters like keeping feedback more constant when we still have a pot directly in circuit. The article is no longer on the website, go for the buffer, it's worth the effort.


Join Us On





Send mail to joeras@vacuumstate.com with questions or comments about this web site.
Copyright © 2003-10 Joe Rasmussen & JLTi
Last modified: Monday June 08, 2015

Just had a terrible thought. If "intelligent design" is unscientific, then who will design our audio equipment?